Close
Help
Need Help?





JOURNAL

Cancer Informatics

1,139,869 Journal Article Views | Journal Analytics

An Integrative Analysis of microRNA and mRNA Expression - A Case Study

Submit a Paper



Publication Date: 17 Jun 2008

Journal: Cancer Informatics

Citation: Cancer Informatics 2008:6 369-379

Li-Xuan Qin

Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, U.S.A.

Abstract

Background: MicroRNAs are believed to play an important role in gene expression regulation. They have been shown to be involved in cell cycle regulation and cancer. MicroRNA expression profiling became available owing to recent technology advancement. In some studies, both microRNA expression and mRNA expression are measured, which allows an integrated analysis of microRNA and mRNA expression.

Results: We demonstrated three aspects of an integrated analysis of microRNA and mRNA expression, through a case study of human cancer data. We showed that (1) microRNA expression efficiently sorts tumors from normal tissues regardless of tumor type, while gene expression does not; (2) many microRNAs are down-regulated in tumors and these microRNAs can be clustered in two ways: microRNAs similarly affected by cancer and microRNAs similarly interacting with genes; (3) taking let-7f as an example, targets genes can be identified and they can be clustered based on their relationship with let-7f expression.

Discussion: Our findings in this paper were made using novel applications of existing statistical methods: hierarchical clustering was applied with a new distance measure—the co-clustering frequency—to identify sample clusters that are stable; microRNA-gene correlation profiles were subject to hierarchical clustering to identify microRNAs that similarly interact with genes and hence are likely functionally related; the clustering of regression models method was applied to identify microRNAs similarly related to cancer while adjusting for tissue type and genes similarly related to microRNA while adjusting for disease status. These analytic methods are applicable to interrogate multiple types of -omics data in general.


Downloads

PDF  (718.41 KB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML






What Your Colleagues Say About Cancer Informatics
testimonial_image
Compared with other journals we considered for publishing, Cancer Informatics provided extremely rapid but quality turnaround from draft submission to a flawlessly typeset final publication.  Moreover, sharing the article is now as easy as sharing a link with no subscriptions required, and additional code and data files are equally accessible, supporting reproducible research.  Because it has published many of our references we feel confident that our target readership must follow the journal.  This is further ...
Dr Seppo Karrila (Prince of Songkla University, Thailand)
More Testimonials

Quick Links




Follow Us We make it easy to find new research papers.




SUBJECT HUBS
Author Survey Results
author_survey_results
All authors are surveyed after their articles are published. Authors are asked to rate their experience in a variety of areas, and their responses help us to monitor our performance. Presented here are their responses in some key areas. No 'poor' or 'very poor' responses were received; these are represented in the 'other' category.
See Our Results