Evolutionary Bioinformatics

Improved Heuristics for Minimum-Flip Supertree Construction

Submit a Paper

Evolutionary Bioinformatics 2006:2 347-356

Published on 28 Feb 2007

Further metadata provided in PDF

Sign up for email alerts to receive notifications of new articles published in Evolutionary Bioinformatics

Duhong Chen1, Oliver Eulenstein1, David Fernández-Baca1 and J.Gordon Burleigh2

1Department of Computer Science, Iowa State University, Ames, IA 50011, U.S.A. 2Section of Evolution and Ecology, University of California, Davis, CA 95616, U.S.A.; Current Address, NESCent, Durham, NC 27705, U.S.A.

Abstract: The utility of the matrix representation with flipping (MRF) supertree method has been limited by the speed of its heuristic algorithms. We describe a new heuristic algorithm for MRF supertree construction that improves upon the speed of the previous heuristic by a factor of n (the number of taxa in the supertree). This new heuristic makes MRF tractable for large-scale supertree analyses and allows the first comparisons of MRF with other supertree methods using large empirical data sets. Analyses of three published supertree data sets with between 267 to 571 taxa indicate that MRF supertrees are equally or more similar to the input trees on average than matrix representation with parsimony (MRP) and modified mincut supertrees. The results also show that large dif ferences may exist between MRF and MRP supertrees and demonstrate that the MRF supertree method is a practical and potentially more accurate alternative to the nearly ubiquitous MRP supertree method.




BibTex citation   (BIBDESK, LATEX)


What Your Colleagues Say About Evolutionary Bioinformatics
This is the first time for me to submit a manuscript to Evolutionary Bioinformatics.  It was really an impressive experience throughout the entire process.  Every step of the process is discernible, punctual and accompanied by a professional and immediate email.   Moreover, the peer reviewers provided fair and insightful comments, which significantly improved the manuscript.  In addition, open access made sharing the article as easy as sharing a link with no subscriptions required and ...
Dr Amr Tag El Din Mahmoud Saeb (King Saud University, Kingdom of Saudi Arabia)
More Testimonials

Quick Links

New article and journal news notification services