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 different structures would also lead to very differ-
ent PPI network topologies.36–39 Moreover, entirely 
different sequences can produce identical pro-
tein structures.40,38 In cases where such proteins are 
expected to share a common function, a sequence-
based function prediction would fail, whereas a net-
work topology-based one would not. Therefore, we 
believe that network topology can uncover important 
biological information that is independent of other 
currently available biological information.35

Hence, unlike the previous local and global net-
work alignment algorithms that depend only implic-
itly or indirectly on network topology, we introduce an 
algorithm called H-GRAAL (Hungarian-algorithm-
based GRAAL)41 that relies solely and explicitly on 
a strong and direct measure of network topological 
similarity. As such, it is easily applicable to any type 
of networks, not just biological ones. In contrast to our 
previous greedy “seed-and-extend” approach that also 
relies solely on network topology,30 H-GRAAL is an 
optimal alignment algorithm (see below for details). 
Note, however, that it is trivial to include sequence 
or other biological information into the cost function 
of our method, as explained in our previous work,30 
but this is out of the scope of the manuscript. Even 
though it is important to use all available sources of 
biological information to try to understand complex 
biological systems, it is as important to understand 
how much biological information can be obtained 
from each source of biological data individually.

We align with H-GRAAL the PPI networks of 
yeast and human and demonstrate that our alignment 
exposes topologically complex and biologically rel-
evant regions of similarity. Since we may know a lot 
about some of the nodes in one network and almost 
nothing about topologically similar nodes in the other 
network, we can transfer the knowledge from one to 
the other to uncover new biology. Hence, we use our 
alignment to predict protein function of unannotated 
proteins in one species based on the functions of their 
annotated alignment partners in the other species. To 
demonstrate effectiveness of topological alignment, 
we validate a large number of our predictions in the 
literature.

Network alignments can also be used to measure 
overall similarity between networks of different species. 
Given a group of such biological networks, the matrix 

of pairwise global network similarities can be used to 
infer phylogenetic relationships. Thus, we apply our 
method to find topological similarities between meta-
bolic networks of different species, and then build phy-
logenetic trees that bear a striking resemblance to the 
ones obtained from sequence comparisons. The signif-
icance of our method is that it uncovers large and dense 
optimal alignments (relative to our cost function) and 
extracts biologically relevant and statistically signifi-
cant meaning solely from network topology, indepen-
dently of any other source of biological information. 
Moreover, it outperforms greedy GRAAL, the current 
best method30 (see Results and Discussion section).

Methods
graphlet degree vectors and signature 
similarities
To build meaningful alignments based solely upon 
 network topology, we match pairs of nodes from dif-
ferent networks using a highly constraining measure of 
their topological similarity, as defined by Milenković 
and Pržulj42 and explained below. We define a graphlet 
as a small, connected, induced subgraph of a larger 
network43,44 (Fig. 1A). An induced subgraph on a node 
set S ⊆ V of G is obtained by taking S and all edges 
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Figure 1. A) All 9 graphlets on 2, 3 and 4 nodes, denoted by G0, G1, 
..., G8; they contain 15 topologically unique node types, called “auto-
morphism orbits,” denoted by 0, 1, 2, ..., 14. In a particular graphlet, 
nodes belonging to the same orbit are of the same shade.44 B) An illus-
tration of the “graphlet Degree Vector” (gDV), or a “signature” of node 
v; coordinates of a gDV count how many times a node is touched by a 
particular automorphism orbit, such as an edge (the leftmost panel), a 
triangle (the middle panel), or a square (the rightmost panel). hence, the 
degree is generalized to a gDV.42 The gDV of node v is presented in the 
table for orbits 0 to 14: v is touched by 4 edges (orbit 0), end-nodes of 
2 graphlets G1 (orbit 1), etc. For an example of gDV of a node for all 73 
orbits  (corresponding to all 30 2-5-node graphlets), see Kuchaiev et al.30
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above.42 The cost of aligning two nodes u and v is 
modified to favor alignment of the densest parts of 
the networks; the cost is reduced as the degrees of 
both nodes increase, since higher degree nodes with 
 similar signatures provide a tighter constraint than cor-
respondingly similar low degree nodes; α ∈ [0, 1] is a 
parameter that weighs the cost-function contributions 
of the node signature similarity between u and v, and 
1 − α weights the contribution of degrees of the nodes 
u and v. More specifically, if deg(u) is the degree of a 
node u, max_deg(G1) and max_deg(G2) are the maxi-
mum degrees of nodes in networks G1 and G2 respec-
tively, S(u,v) is the signature similarity of nodes u and 
v as defined above, and α is as defined above, then the 
cost of aligning nodes u and v, C(u,v), is given by the 
following formulas:

 T ( ) = ( ) + ( )
( )  + ( )2

u,v deg u deg v
max_deg G max_deg G1

;  

 C u v T u v S u v( , ) = 2 (( ) ( , ) + ( , )).− α × α ×1-   

A cost of 0 corresponds to a pair of topologically 
identical nodes u and v, while a cost close to 2 cor-
responds to a pair of topologically very different 
nodes.

Clearly, most nodes u and v will be of low 
degree, since biological networks G1 and G2 have 
power-law degree distributions and hence T(u,v) 
will be very low; this is because power-law degree 
distributions of G1 and G2 imply the existence of 
a small number of hubs (highly-linked nodes), so 
max_deg(G1) and max_deg(G2) will be much larger 
than deg(u) and deg(v) for most nodes u and v. This 
will give more weight to signature similarity S(u,v) 
even for very small α (e.g. α = 0.1). However, for 
α = 0, the entire weight will be given to degrees.

We use the Hungarian algorithm for minimum-
weight bipartite matching41 to find an optimal align-
ment from G1 to G2 with respect to the cost function 
described above. The Hungarian algorithm is a stan-
dard polynomial-time algorithm for solving the linear 
assignment problem. Details of the algorithm can be 
found in most texts on graph algorithms e.g. West;41 
an excellent outline can also be found in Mills-Tettey 
et al46 as a prelude to the presentation of the dynamic 

Hungarian algorithm. We set up a complete bipartite 
graph with V(G1) and V(G2) as the bipartition and 
each edge (u,v) from V(G1) to V(G2) is labeled with 
the node alignment cost between u and v. H-GRAAL 
then uses the Hungarian algorithm to find an alignment 
from G1 to G2 by minimizing the cost summed over 
all aligned pairs. Note that while there may be more 
than one optimal alignment (with the same minimum 
cost), H-GRAAL initially returns only one such align-
ment. Furthermore, the particular alignment found by 
H-GRAAL is highly dependent on the implementa-
tion details of the underlying Hungarian algorithm. 
For example, the order in which the nodes of G1 
and G2 are presented to the algorithm can influence 
which augmenting paths are found at each stage of 
the algorithm, which in turn determines the ultimate 
matching found. While this potential variability in 
results returned from different implementation of the 
Hungarian algorithm may seem disconcerting at first, 
there are relatively simple and efficient measures 
that can be taken to learn about all possible optimal 
matchings, not just any one matching a particular 
implementation happens to return. These measures 
are described in the following paragraphs.

If we already have an optimal alignment A0, 
such as the one found from an initial invocation of 
H-GRAAL, a simple way to force H-GRAAL to gen-
erate another optimal alignment is to raise the align-
ment cost of a node-pair (u,v) in A0 to +∞ and then 
invoke H-GRAAL on the modified alignment prob-
lem. Artificially inflating the cost of (u,v) guarantees 
that the Hungarian algorithm will never select it as 
part of any optimal alignment, effectively removing 
(u,v) from consideration. We term such a cost modi-
fication of (u,v) a removal of (u,v). So any alignment 
(subsequent to A0) found by H-GRAAL after removing 
(u,v) cannot possibly contain (u,v) and must therefore 
be different from A0. If this subsequent invocation of 
H-GRAAL produces an alignment with the same cost 
as A0, then we have another optimal alignment to the 
original problem. If a costlier alignment is produced, 
then we need to pick another aligned pair from A0 and 
repeat the process. If we have picked all pairs of A0 
without success, then A0 is the only optimal align-
ment possible.

The only problem with this simple procedure is 
one of efficiency. If G1 and G2 have O(n) nodes, the 
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phylogenetic tree from the obtained alignment scores 
in the same way we generate the phylogenetic trees for 
real metabolic networks; we call the resulting tree the 
“random tree”. To take into account the randomness of 
the model, we repeat this procedure 30 times, resulting 
in 30 instances of “random trees”.

Next, we compare each pair of “random trees”. 
Additionally, we compare our phylogenetic trees with 
all 30 corresponding “random trees”. To compare 
two phylogenetic trees, we use the patristic distance.a 
After we find the average pairwise distance between 
all pairs of 30 “random trees” and the correspond-
ing standard deviation, as well as the average distance 
between the real phylogenetic tree and the 30 “random 
trees”, we compute the upper bounds of p-values by 
using Chebyshev’s inequality:

 P |
2

2X −( ) ⋅µ α σ
α

|   

For details, see Kuchaiev et al.30 

Results and Discussion
Method validation
To measure the performance of H-GRAAL and bench-
mark it against other network alignment methods, we 
first analyze the largest connected component of the 
high-confidence yeast S. cerevisiae PPI network by 
Collins et al.10 We align this network with the same 
network augmented with interactions from the lower-
confidence data set described by Collins et al.10 We 
analyze different noise levels, by adding 5%, 10%, 
15%, 20%, and 25% of lower-confidence interac-
tions; we add higher-confidence interactions first. For 
each noise level, we produce alignments by varying α 
from 0 to 1, in increments of 0.1 (Methods section). 
Since the networks being aligned are defined on the 
same set of nodes and differ only in the number of 
edges, we know the true alignment, i.e. the correct 
node matching. Thus, we report all three alignment 
quality scores: NC, EC, and IC.

Depending on the noise level, H-GRAAL achieves 
NC of up to 84%, EC of up to of 94%, and IC of up 
to 79% (Fig. 2); this demonstrates that our algorithm 
is capable of producing high-quality alignments with 
high NC, EC, and IC. Clearly, with increased level 

of noise, the performance deteriorates. The statistics 
do not differ much for α between 0.1 and 1 at the 
same noise level. However, the alignments are very 
bad for α of 0, i.e. when only node degrees are used 
in the cost function, without any contribution of node 
 signatures. This indicates that node degrees alone 
are not an appropriate measure of network topology. a http://www.mathworks.com/access/helpdesk/help/toolbox/bioinfo/index.html
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Figure 2. Comparison of h-grAAL with grAAL with respect to A) node 
correctness, B) edge correctness, and c) interaction correctness, for 
noise levels of 5%, 10%, 15%, 20%, and 25%, and for α between 0 
and 1, in increments of 0.1. note that h-grAAL always produces better 
alignments than grAAL for all values of α, and that using only degrees 
(α = 0) gives bad results. This tells us that graphlet-based signatures are 
far more valuable than a measure based on degree alone.
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an additional 6-node subnetwork in which 100% of 
annotated yeast and 100% of annotated human pro-
teins are involved in transcription. Finally, it aligns a 
5-node subnetwork in which 100% of annotated yeast 
and 100% of annotated human proteins are involved 
in transport. The p-values for all of the above pre-
sented functional enrichments in the corresponding 
yeast and human subnetworks are in the 10−4 to 10−11 
range (Methods section).

Application to protein function prediction
Given that we demonstrated high topological and 
biological quality of H-GRAAL’s yeast-human 
 alignment, we transfer annotation between aligned 
proteins across the two networks. In particular, we 
predict from H-GRAAL’s alignment the biological 
characteristics (i.e. GO molecular function (MF), 
 biological process (BP), and cellular component 
(CC)) of unannotated proteins based on the character-
istics of their annotated aligned partners.

We make predictions with respect to two different 
sets of GO annotation data: the complete set described 
above, containing all GO annotations, independent of 
GO evidence codes, and a biologically-based set, con-
taining GO annotations obtained by experimental evi-
dence codes only.47 Many terms in the complete GO 
annotation data set were computationally assigned to 
proteins (e.g. from sequence alignments), and thus, it is 
biologically less confident than the biologically-based 
one. We identify proteins with unknown function whose 
aligned partners are annotated with a known MF, BP, or 
CC GO term, with respect to both the complete and 
biologically-based GO annotation data sets, and we 
assign all known MF, BP, or CC GO terms to the unan-
notated protein (see Kuchaiev et al30 for details).

With respect to the complete GO data set, we pre-
dict MF for 22 human and 299 yeast proteins, BP 
for 27 human and 105 yeast proteins, and CC for 
37 human and 29 yeast proteins. We attempt to vali-
date all of our predictions using the literature search 
and the text mining tool CiteXplorer.59 We success-
fully validate at least one MF, BP, and CC prediction 
for 44.4%, 42.9%, and 51.6% human proteins, and 
49.8%, 4.7%, and 11.8% yeast proteins, respectively; 
by “successfully validate”, we mean that this tool 
finds at least one article mentioning the protein of 
interest in the context of at least one of our MF, BP, 
and CC predictions for that protein, respectively. We 

call the above percentages the “validation hit-rate”. 
In summary, we successfully validate at least one MF, 
BP, or CC prediction for 59% of human and 46% of 
yeast proteins.

With respect to the biologically-based GO data 
set, we predict MF for 15 human and 163 yeast pro-
teins, BP for 22 human and 24 yeast proteins, and CC 
for 34 human and 15 yeast proteins. Our validation 
“hit-rates” with CiteXplorer for MF, BP, and CC are 
25%, 23.5%, and 20.7% for human, and 55.5%, 0%, 
and 9.1% for yeast, respectively. Hence, in summary, 
we validate with CiteXplorer at least one MF, BP, or 
CC prediction for 29% of human and 52% of yeast 
proteins.

Note that, since a protein can (and is expected to) 
perform multiple functions, and since indications on 
the biological function of unannotated proteins in the 
literature are limited, it is possible that more of our 
predictions for human and yeast proteins are correct 
than we have been able to validate.

Our validation results are mostly better than those 
for GRAAL: with respect to the complete GO data 
set, GRAAL’s validation hit-rates for MF, BP, and CC 
are 34.1%, 43.4%, and 46.2% for human, and 42.1%, 
3.2%, and 13% for yeast, respectively; with respect to 
the biologically-based GO data set, GRAAL’s valida-
tion hit-rates for MF, BP, and CC are 10%, 4.8%, and 
20% for human, and 48.1%, 0%, and 0% for yeast, 
respectively.

reconstruction of phylogenetic trees 
by aligning metabolic pathways across 
species
Additionally, we apply our approach to recover phy-
logenetic relationships between species by finding 
 topological similarities between their metabolic net-
works. Although related attempts exist,60–63 they all 
use some biological or functional information such 
as sequence similarities, structural similarities, or 
enzyme commission numbers, to define node similar-
ities and derive phylogenetic trees from pathways. On 
the other hand, we rely solely on the network topology 
to define node similarity, as was done with GRAAL.30 
Thus, our information source is  fundamentally dif-
ferent from the information sources used in related 
approaches and our algorithm recovers phylogenetic 
relationships (but not the evolutionary timescale of 
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