Close
Help
Need Help?





JOURNAL

Cancer Informatics

1,261,242 Journal Article Views | Journal Analytics

Staging of Prostate Cancer Using Automatic Feature Selection, Sampling and Dempster-Shafer Fusion

Submit a Paper



Publication Date: 03 Feb 2009

Type: Original research

Journal: Cancer Informatics

Citation: Cancer Informatics 2009:7 57-73

Sandeep Chandana1, Henry Leung1 and Kiril Trpkov2

1Department of Electrical and Computer Engineering, University of Calgary, ICT-402, 2500 University Drive NW, Calgary, Alberta, T2N 1N4 Canada. 2Department of Pathology and Laboratory Medicine, Calgary Laboratory Services, Calgary, Alberta T2V 1P9 Canada.

Abstract

A novel technique of automatically selecting the best pairs of features and sampling techniques to predict the stage of prostate cancer is proposed in this study. The problem of class imbalance, which is prominent in most medical data sets is also addressed here. Three feature subsets obtained by the use of principal components analysis (PCA), genetic algorithm (GA) and rough sets (RS) based approaches were also used in the study. The performance of under-sampling, synthetic minority over-sampling technique (SMOTE) and a combination of the two were also investigated and the performance of the obtained models was compared. To combine the classifier outputs, we used the Dempster-Shafer (DS) theory, whereas the actual choice of combined models was made using a GA. We found that the best performance for the overall system resulted from the use of under sampled data combined with rough sets based features modeled as a support vector machine (SVM).



Downloads

PDF  (790.53 KB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

BibTex citation   (BIBDESK, LATEX)

XML






What Your Colleagues Say About Cancer Informatics
This is the first time for us to submit a manuscript to Cancer Informatics.  We thank the peer reviewers for their insightful comments, which have improved our manuscript markedly. We were pleased to find that the staff were extremely helpful and kept us informed of the progress of the submission step-by-step. Our experience with Cancer Informatics has been tremendous. Thank you very much!
Dr Yirong Wu (University of Wisconsin, Madison, WI, USA)
More Testimonials

Quick Links




Follow Us We make it easy to find new research papers.




SUBJECT HUBS
Author Survey Results
author_survey_results
All authors are surveyed after their articles are published. Authors are asked to rate their experience in a variety of areas, and their responses help us to monitor our performance. Presented here are their responses in some key areas. No 'poor' or 'very poor' responses were received; these are represented in the 'other' category.
See Our Results