Gene Regulation and Systems Biology

Unique Sex-Based Approach Identifies Transcriptomic Biomarkers Associated with Non-Syndromic Craniosynostosis

Submit a Paper

Gene Regulation and Systems Biology 2012:6 81-92

Original Research

Published on 16 May 2012

DOI: 10.4137/GRSB.S9693

Further metadata provided in PDF

Sign up for email alerts to receive notifications of new articles published in Gene Regulation and Systems Biology


Background: The premature fusion of one cranial suture, also referred to as non-syndromic craniosynostosis, most commonly involves premature fusion of the sagittal, coronal, or metopic sutures, in that order. Population-based epidemiological studies have found that the birth prevalence of single-suture craniosynostosis is both suture- and sex-dependent.

Methods: Transcriptomic data from 199 individuals with isolated sagittal (n = 100), unilateral coronal (n = 50), and metopic (n = 49) synostosis were compared against a control population (n = 50) to identify transcripts accounting for the different sex-based frequencies observed in this disease.

Results: Differential sex-based gene expression was classified as either gained (divergent) or lost (convergent) in affected individuals to identify transcripts related to disease predilection. Divergent expression was dependent on synostosis sub-type, and was extensive in metopic craniosynostosis specifically. Convergent microarray-based expression was independent of synostosis sub-type, with convergent expression of FBN2, IGF2BP3, PDE1C and TINAGL1 being the most robust across all synostosis sub-types.

Conclusions: Analysis of sex-based gene expression followed by validation by qRT-PCR identified that concurrent upregulation of FBN2 and IGF2BP3, and downregulation of TINAGL1 in craniosynostosis cases were all associated with increased RUNX2 expression and may represent a transcriptomic signature that can be used to characterize a subset of single-suture craniosynostosis cases.




Supplementary Files 1  (43.49 KB ZIP FORMAT)

BibTex citation   (BIBDESK, LATEX)


What Your Colleagues Say About Gene Regulation and Systems Biology
The reviewing and editorial management of our paper was timely, thorough, and systematic.  In particular the reviewers' comments resulted in a paper significantly more robust than the first version.
Dr Clark D Jeffries (University of North Carolina at Chapel Hill, Chapel Hill, NC, USA)
More Testimonials

Quick Links

New article and journal news notification services