Close
Help





JOURNAL

Evolutionary Bioinformatics

430,670 Journal Article Views | Journal Analytics

Species Delimitation and Global Biosecurity

Submit a Paper



Publication Date: 08 Dec 2011

Type: Original Research

Journal: Evolutionary Bioinformatics

Citation: Evolutionary Bioinformatics 2012:8 1-37

doi: 10.4137/EBO.S8532

Abstract

Species delimitation directly impacts on global biosecurity. It is a critical element in the decisions made by national governments in regard to the flow of trade and to the biosecurity measures imposed to protect countries from the threat of invasive species. Here we outline a novel approach to species delimitation, “tip to root”, for two highly invasive insect pests, Bemisia tabaci (sweetpotato whitefly) and Lymantria dispar (Asian gypsy moth). Both species are of concern to biosecurity, but illustrate the extremes of phylogenetic resolution that present the most complex delimitation issues for biosecurity; B. tabaci having extremely high intra-specific genetic variability and L. dispar composed of relatively indistinct subspecies. This study tests a series of analytical options to determine their applicability as tools to provide more rigorous species delimitation measures and consequently more defensible species assignments and identification of unknowns for biosecurity. Data from established DNA barcode datasets (COI), which are becoming increasingly considered for adoption in biosecurity, were used here as an example. The analytical approaches included the commonly used Kimura two-parameter (K2P) inter-species distance plus four more stringent measures of taxon distinctiveness, (1) Rosenberg’s reciprocal monophyly, (P(AB)),1 (2) Rodrigo’s (P(randomly distinct)),2 (3) genealogical sorting index, (gsi),3 and (4) General mixed Yule- coalescent (GMYC).4,5 For both insect datasets, a comparative analysis of the methods revealed that the K2P distance method does not capture the same level of species distinctiveness revealed by the other three measures; in B. tabaci there are more distinct groups than previously identified using the K2P distances and for L. dipsar far less variation is apparent within the predefined subspecies. A consensus for the results from P(AB), P(randomly distinct) and gsi offers greater statistical confidence as to where genetic limits might be drawn. In the species cases here, the results clearly indicate that there is a need for more gene sampling to substantiate either the new cohort of species indicated for B. tabaci or to detect the established subspecies taxonomy of L. dispar. Given the ease of use through the Geneious species delimitation plugins, similar analysis of such multi-gene datasets would be easily accommodated. Overall, the tip to root approach described here is recommended where careful consideration of species delimitation is required to support crucial biosecurity decisions based on accurate species identification.


Downloads

PDF  (11.05 MB PDF FORMAT)

RIS citation   (ENDNOTE, REFERENCE MANAGER, PROCITE, REFWORKS)

Supplementary Files 1  (47.04 MB M4V FORMAT)

BibTex citation   (BIBDESK, LATEX)

XML


Video Abstract





What Your Colleagues Say About Evolutionary Bioinformatics
According to my experience as a co-author, I recommend potential authors to publish their innovative bioinformatics work in Evolutionary Bioinformatics.  I am particularly satisfied with the rapid and high-quality review process, proofs delivery and eventual publication.
Dr Leho Tedersoo (University of Tartu, Estonia)
More Testimonials

Quick Links


New article and journal news notification services